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1 The problems

Prove that ∞
∏
k=1

(1 +
(−1)k+1

2k − 1
) =

√
2.

More generally show that

lim
k→∞

2 .4 .6 .8 . . . . .2kN

1 .3 .5 . . . . . (2kN − 1)
.
1 .3 .5 . . . .(2k − 1)

2 .4 .6 .8 . . . . .2k
=
√
N.

The infinite product is on page 12 of the tables of series and products by Gradshteyn and Ryzhik
who attribute it to Euler in his astounding two-volume ‘Introductio in Analysin Infinitorum’, 1748.
The second is problem 10 on page 104 of the book on infinite series by T. J. l’A Bromwich, 1907.

2 The infinite product

I have not looked at the Latin text to see how Euler came by this formula. My solution is less than
rigorous since I prove that the logarithm of the product approaches 1

2 ln 2 = ln
√

2 as k → ∞ using
Stirling’s asymptotic series of the factorial function. The first step is to expand a few factors:

Π = (1 +
1

1
)(1 −

1

3
)(1 +

1

5
)(1 −

1

7
)(1 +

1

9
)(1 −

1

11
)(1 +

1

13
) . . . .

=
2

1
.
2

3
.
6

5
.
6

7
.
10

9
.
10

11
.
14

13
.
14

15
. . . . . . .

=
22

1 .3
.
22 .32

5 .7
.
22 .52

9 .11
.

22 .72

13 .15
.

22 .92

17 .19
. . . . .

If this product is truncated at these five double-integer factors labelled 0 to 4,

Π4 = 210 .
12

1 .3
.

32

5 .7
.

52

9 .11
.

72

13 .15
.

92

17 .19
.

The denominator can be written as the quotient of two factorials:

1 .3 .4 .5 .7 .9 . . . . (2n + 1) =
(2n + 1)!

2n n!

and similarly the numerator is the squared ratio of factorials, though with a more slowly advancing
index. The general product Πn is

Πn =
22n+3 [(2n + 1)!]3

(n!)2 (4n + 3)!
. (1)
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The correspondence between k in the original product and n is k = 2n+2. Both forms of the product
converge slowly from below as these numerical values illustrate:

Π4 =
64512

46189
≈ 1 ⋅ 397, Π10 ≈ 1 ⋅ 406, Π50 ≈ 1 ⋅ 4125, Π100 ≈ 1 ⋅ 4133,

√
2 = 1 ⋅ 4142....

Now I take the logarithm of Πn

ln Πn = (2n + 3) ln 2 + 3 ln(2n + 1)! − 2 lnn! − ln(4n + 3)! .

So far there is no approximation, but now replace the factorials with their asymptotic expansions
lnn! ∼ n lnn − n + ln

√
2πn ≈ (n + 1

2) lnn − n as n→∞.

ln Πn ∼ (2n + 3) ln 2 + 3(2n + 3
2) ln(2n + 1) − 3(2n + 1) − (2n + 1) lnn + 2n − (4n + 7

2) ln(4n + 3) + 4n + 3.

The constants and terms in n cancel leaving

ln Πn ∼ (2n + 3) ln 2 + 3(2n + 3
2) ln(2n + 1) − (2n + 1) lnn − (4n + 7

2) ln(4n + 3).

Now make the bold step of stating that for large n ln(2n + 1) ≈ ln 2n = lnn + ln 2 and ln(4n + 3) ≈
ln 4n = lnn + 2 ln 2:

ln Πn ∼ (2n + 3) ln 2 + (6n + 9
2) lnn + (6n + 9

2) ln 2 − (2n + 1) lnn − (4n + 7
2) lnn − (8n + 7) ln 2.

The terms in lnn cancel leaving terms only in ln 2:

ln Πn ∼ (2n + 3 + 6n + 9
2 − 8n − 7) ln 2 = 1

2 ln 2 = ln
√

2.

This completes the proof. It might be argued that it relies too heavily on Stirling’s asymptotic
formula and that a more rigorous proof should be possible from Eq 1. I leave the quest to the
interested reader.

3 Limit of product

To address the second problem posed I will follow the same approach of first expressing the limiting
product in factorials then replacing the logarithm of these by Stirling’s approximation. We will need

1 .3 .4 .5 .7 .9 . . . . (2m − 1) =
(2m − 1)!

2m−1 (m − 1)!
=

(2m)!

2mm!

The four sub-products are
2 .4 .6 .8 . . . . .2kN = 2kN(kN)!

1 .3 .5 . . . . . (2kN − 1) =
(2kN)!

2kN (kN)!

1 .3 .5 . . . .(2k − 1) =
(2k)!

2k k!

2 .4 .6 .8 . . . . .2k = 2k k!

Putting these together the expression is

lim
k→∞

22k(N−1)
(
(kN)!

k!
)

2
(2k)!

(2kN)!
.
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The logarithm of the argument whose limit k →∞ is sought is

2k(N − 1) ln 2 + 2 ln(kN)! − 2 lnk! + ln(2k)! − ln(2kN)!

When Stirling’s approximation is inserted the ‘−m’ terms in (m + 1
2) lnm −m cancel to leave

2k(N − 1) ln 2 + 2(kN + 1
2) lnkN − 2(k + 1

2) lnk + (2k + 1
2) ln 2k − (2kN + 1

2) ln 2kN.

Expand the logarithms:

2k(N − 1) ln 2 + 2(kN + 1
2) lnk + 2(kN + 1

2) lnN − 2(k + 1
2) lnk

+ (2k + 1
2) lnk + (2k + 1

2) ln 2 − (2kN + 1
2) lnk − (2kN + 1

2) lnN − (2kN + 1
2) ln 2.

The coefficients of ln 2, lnk and lnN are

ln 2 ∶ 2kN − 2k + 2k + 1
2 − 2kN − 1

2 = 0,

lnk ∶ 2kN + 1 − 2k − 1 + 2k + 1
2 − 2kN − 1

2 = 0,

lnN ∶ 2kN + 1 − 2kN − 1
2 = 1

2

This shows that the logarithm of the argument is 1
2 lnN = ln

√
N consistent with the

√
N in the

question.

John Coffey, January, 2022
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