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1 The question

Prove that the continued fraction

3 �

� 1

4 �

� 2

5 �

� 3

6 �

� 4

7 �

� 5

8 � . . .

has the value e � exp�1�.
This continued fraction featured in an article in the New Scientist magazine in July 2019. The

article was headed ‘Computer attempts to replicate the dream-like maths of Ramanujan’ and refers
to research at the Israel Institute of Technology at Haifa to use artificial intelligence to conjecture
series and continued fractions which converge to e or π, following the amazing discoveries made in
the early 20th century by the Indian genius Srinivasa Ramanujan. The above is a new conjecture
produced by their algorithm. Their method and more results are described in an article on the
internet at www.groundai.com/project/the-ramanujan-machine-automatically-generated-conjectures-
on-fundamental-constants/1. Figure 1 is an extract from this article giving another continued fraction
for e and two for π.

I wondered how one would prove that the continued fraction does converge to exp�1� and
not to some close but different number The notes below are my attempt to do so.

Some years ago I wrote a monologue on continued fractions (see www.mathstudio.co.uk). In
the compact notation used there the above would be written as �3 � �1,4,�2,5,�3,6,�4,7, ...�. The
usual continued fraction for e also shows a clear pattern; it is �2 � 1,2,1,1,4,1,1,6,1,1,8,1,1,10, ...�.
The individual integers in this chain are called partial quotients and the evaluation of the continued
fraction to a given depth is called a convergent. Our given continued fraction is unusual is having
the minus signs. The classic way to produce continued fraction from a given ordinary fraction or
decimal, as my article explains, is to use the Euclidean algorithm for the greatest common divisor
of numerator and denominator. The same applies to continued fractions representing square roots.
Continued fractions produced in this way have the property that their convergents each give the best
approximation to the parent number amongst all fractions with about the same size of denominator.
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Figure 1: Four new formulae discovered by the team at the Israel Institute of Technology.

2 Conversion to an infinite series

Many continued fractions with patterns in their partial fractions can be converted into series. My
long article at www.mathstudio.co.uk gives several examples. The idea now is to convert the given
continued factor to a series and see if we can recognise a known representation of e. In a normal
continued fraction produced by the Euclidean algorithm all the partial quotients are positive and the
sequence of convergents alternates about its limiting value. In our problem’s continued fraction for
e the minus signs produce a monotonically converging sequence.

Evaluate successive convergents. By subtracting each from the previous one, we get the terms
of the series. Thus
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The first 3 terms of the series are therefore �1~4,�1~36,�1~288. Continuing in this way, the next
terms are �1~2400,�1~21600,�1~211680. The denominators have the general term

g�n� � n�n � 1�n! , n C 2. �1a�
The next two are g(8)=2,257,920, g(9)=26,127,360, and the continued fraction is equivalent to

3 �

ª

Q
n�2

1

g�n� . �1b�
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3 Summing a factorial series: an example

The exponential function can be defined as the infinite series

expx � ex �
ª

Q
n�0

xn

n!
so e �

ª

Q
n�0

1

n!
�2�

My idea was to use this as the starting place for finding a function which has the additional n�n�1� in
the denominators, as required for g�n�. Hopefully that would lead to an analytic expression proving
that P1~g � 3 � e.

My experience has been that 1~g has technical difficulties, so I will first illustrate the intended
general method by deriving a similar infinite series which happens to have the same sum of 3 � e.
The essential point is that to introduce n and n � 1 into the denominator of the series for expx, it
seems necessary to integrate the xn. Recall that

S xn dx �
xn�1

n � 1
.

Therefore consider the function

xex �

ª

Q
0

xn�1

n!
.

The scheme is to integrate the left and right hand sides of this – the left as a function, the right as
a series – and equate the two. Take the series first:

I1�y� � S
y

0

ª

Q
0

tn�1

n!
dt �
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Q
0

� tn�2

�n � 2�n!
	y
0

�

ª

Q
0

yn�2

�n � 2�n!

Integrating a second time

I2�x� � S
x

0
I1�y�dy �

ª

Q
0

xn�3

�n � 3��n � 2�n!
.

At x � 1

I2�1� �

ª

Q
0

1

�n � 3��n � 2�n!
.

Now the left hand side. Integrating by parts with u � t, etdt � dv gives

S
y

0
tet dt � �tet � et�y0 � �y � 1�ey � 1 � J1�y�.

Integrating by parts a second time

S
x

0
J1�y�dy � ��y � 2�ey � y�x0 � �x � 2�ex � x � 2

and when x � 1 this has the value 3 � e. The conclusion is that

ª

Q
0

1

�n � 3��n � 2�n!
�

ª

Q
0

n � 1

�n � 3�! � 3 � e . �3�
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Some numerical values of successive partial sums will compare the convergence of this series with

P2 1~g�n� in Eq 1. The first six partial sums of each are as follows:

Eq 1a,b : 0 � 250, 0 � 2778, 0 � 28125, 0 � 28167, 0.281713, 0 � 281718.

Eq 3 : 0 � 167, 0 � 250, 0 � 2750, 0 � 28055, 0 � 281548, 0 � 281696,

A precise value is 3 � e � 0 � 281718171541.. Both Eqs 1 and 3 achieve this accuracy with 13 terms,
though Eq 1 initially converges faster. The Euclidean algorithm produces the continued fraction
3 � e � �0 � 3,1,1,4,1,1,6,1,1,8, . . .� and its convergents are

1
3 ,

1
4 ,

2
7 ,

9
32 � 0 � 28125, 11

39 � 0 � 28205, 20
71 � 0 � 28169, 131

465 � 0 � 281720, . . . .

4 Linking e to P1~g�n�

If we try to apply the method of §2 to P2 1~g�n�, the obvious function to choose is

ex

x2
�

ª

Q
n�0

xn�2

n!
�4�

since integrating this twice will bring down n � 1 then n into the denominator. Unfortunately ex~x2
is much less well behaved than xex. It has a singularity at x � 0 so the lower limit of integration
cannot be set to 0, but instead to some small value a A 0 and at some point the limit a� 0 taken. In
addition there is no closed form for its integrals. Instead it is represented by a special function Ei(x)
which in turn is expressed by an infinite series. That clearly brings the risk that evaluating the two
sides of Eq 4 will lead only to a tautology. So we venture forth with caution and fingers crossed.

4.1 Right side

The series is

I0�t� �
1

t2
�

1

t
�

ª

Q
n�2

tn�2

n!

and the first integral is from a to y:

I1�y� � S
y

a
I0�t�dt � ��1

t
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ª

Q
2

tn�1

�n � 1�n!
	y
a

The second integral is from a to 1
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1

a
��1

y
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ª

Q
2

yn�1

�n � 1�n!
�

1

a
� lna �

ª

Q
2
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�n � 1�n!
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� �� ln y � y ln y � y �

ª

Q
2

yn
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	1
a

� y �1

a
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ª

Q
2
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	1
a

.

With ln 1 � 0 this evaluates to

�1 �Q
2

1

g�n� � lna � a lna � a �

ª

Q
2

an

n�n � 1�n!
�

1

a
� lna �

ª

Q
2

an�1

�n � 1�n!
� 1 � a lna �

ª

Q
2

an

�n � 1�n!
,

I2�1� � Q
2

1 � an

g�n� � 2 � a �

1

a
� �1 � a� ªQ

2

an�1

�n � 1�n!
. �5�

I carried out a few numerical checks to satisfy myself that this is correct. Clearly the limit a � 0
cannot be taken yet because of the 1~a term which dominates for small a. It is to be hoped that it
will cancel when the left side is evaluated.
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4.2 Left side

Here we meet the exponential integral Ei(x), a special function tabulated in the handbook by
Abramowitz and Stegun and on-line at the NIST Digital Library of Mathematical Functions. It
is defined as the principal value of

Ei�x� � S
x

�ª

ex

x
dx, x A 0

where the path of integration avoids the origin.

Start by integrating ex~x by parts in two ways.

Method A Let u � 1~x, dv � ex dx to obtain

S ex

x
dx �

ex

x
� S ex

x2
dx � C

where C is some constant. From this

J1�y� � S
y

a

et

t2
dt � ��et

t
	y
a

� S
y

a

et

t
dt .

This generates our required first integral J1�y� as

J1�y� � �

ey

y
�

ea

a
� Ei�y� � Ei�a� . �6�

Method B Let u � ex, dv � dx~x to obtain

Ei�x� � ex lnx � S ex lnxdx.

The integral on the right can only be performed by appeal to the series expansion of ex. Again by
parts

S ex lnxdx. �

ª

Q
0
S xn lnx

n!
dx �

ª

Q
0

xn�1

�n � 1�! �lnx �

1

n � 1
�

� �ex � 1� lnx �

ª

Q
1

xn

nn!
.

Putting this result into the above expression for Ei(x) gives

Ei�x� � lnx �

ª

Q
1

xn

nn!
�C �7�

where C is a constant. Abramowitz and Stegun give this result in their book at §5.1.10 with C � γ,
Euler’s constant whose value is 0 �5772.... However, we do not have to be concerned with this since it
cancels when integration is between finite limits. They do not give R Ei(x) but it can be found from
Eq 7 as follows:

S Ei�x�dx � x lnx � x �

ª

Q
1

xn�1

�n � 1�nn!
.

Split 1~�n�n � 1�� into partial fractions as 1~n � 1~�n � 1� to obtain

S Ei�x�dx � x lnx �

ª

Q
1

xn�1

nn!
� x �

ª

Q
1

xn�1

�n � 1�n!
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� xEi�x� � x �

ª

Q
2

xn

n!
� xEi�x� � x � �ex � 1 � x� � xEi�x� � ex � 1 . �8�

This places us in a position to carry out the second integration of ex~x2. From Eq 6

S
1

a
J1�y�dy � ��Ei�y� � y � y

ea

a
� yEi�y� � ey � yEi�a� �1

a
.

�
ea

a
� e . �9�

4.3 Matching Left with Right

With all the integrations carried out, the left side of Eq 4 can be equated to the right: Eq 5 to Eq 9.

ea

a
� e � Q

2

1 � an

g�n� � 2 � a �

1

a
� �1 � a� ªQ

2

an�1

�n � 1�n!
.

and the limit a � 0 taken. Near this limit ea~a � 1~a � 1 and the 1~a cancel across the two sides as
we had hoped. The above two sides approach

1 � e � Q
2

1

g�n� � 2

proving that

Q
2

1

g�n� � 3 � e.

This coincides with Eq 1b and so confirms that the continued fraction found by the Israel Institute
of Technology team does indeed equal e.
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