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The Challenge : A sphere with unit radius centred at O: (0, 0, 0) is cut by three non-
parallel planes each of which passes through O. The spherical surface is thereby divided into
eight shells, each a spherical triangle whose edges are great circles. Select one such triangle
with vertices P, Q, R and obtain its properties in terms of the positions of P, Q, R and the
angles between the cutting planes. In addition the planar triangle is drawn with vertices P,
Q and R. Relate its properties to those of the spherical triangle which shares the same three
vertices.

Main features of the geometry

The four diagrams in Figure 1 show the two triangles in relation to the origin O of the sphere
with unit radius and the three intersecting planes. We assume that the absolute position of
the triangles around the sphere is not significant. Both triangles are completely specified by
either the position vectors p̂, q̂, r̂ to the vertices, or by the angles θ, ξ, η between them as
marked in the bottom left panel.

As a matter of notation, the markˆover a vector will denote a unit vector. This will
distinguish it from vectors which have not been normalised. Similarly angled brackets will
mean that the vector function inside has been normalised to unit modulus. For instance,
< p̂ − q̂>= (p̂ − q̂)/∣p̂ − q̂∣, with ∣...∣ denoting the norm.

The unit vectors d̂ and ê lie in the tangent plane at P so the angle P between them
is the dihedral1 angle between the blue and red intersecting planes. This is also the angle
between their normals. The normals pointing into the tetrahedron OPQR are given by the
cross products p̂ × r̂ for the blue plane and q̂ × p̂ for the red. Recall that the magnitude of
the cross (vector) product ∣p̂ × r̂∣ = ∣p̂∣.∣r̂∣ sin θ = sin θ. These vector relations hold:

d̂⋅p̂ = 0, d̂⋅(p̂×r̂) = 0, ê⋅q̂ = 0, ê⋅(p̂×q̂) = 0, d̂⋅ê = cosP, < p̂×r̂ > ⋅ < p̂×q̂ >= cosP.

f̂ ⋅q̂ = 0, f̂ ⋅(p̂×q̂) = 0, ĝ⋅q̂ = 0, ĝ⋅(q̂×r̂) = 0, f̂ ⋅ĝ = cosQ, < q̂×r̂ > ⋅ < p̂×q̂ >= cosQ.

k̂⋅r̂ = 0, k̂⋅(p̂×r̂) = 0, ĥ⋅r̂ = 0, ĥ⋅(q̂×r̂) = 0, k̂⋅ĥ = cosR, < p̂×r̂ > ⋅ < q̂×r̂ >= cosR.

−d̂ ⋅ k̂ = cos θ, −ê ⋅ f̂ = cos ξ, −ĝ ⋅ ĥ = cos η. (1)
1 ‘Dihedral’ comes the ancient Greek. ‘Hedra’ relates to sitting on a chair or throne, or figuratively as the seat of

authority, and in this sense occurs in our word ‘cathedral’, the seat of the bishop. In a mathematical context hedra
are the faces of a geometric solid, the surfaces on which it could rest.
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Figure 1: Four views of the spherical and planar triangles PQR cut from a unit radius sphere by
three planes (blue, red, yellow). Unit position vectors p̂, q̂, r̂ are shown, as are the angles θ, ξ and
η between them, and the three pairs of unit tangent vectors d̂ and ê, f̂ and ĝ, ĥ and k̂.
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The planar triangle and tetrahedron

The planar triangle is easier to analyse than the spherical so we deal with it here. It is one
face of the tetrahedron OPQR. Its three edges are the vectors q̂ − p̂ from P to Q, r̂ − p̂ from
P to R, and r̂ − q̂ between Q and R. The norm of each of these is the length of the side.

Denote the three angles by P ′, Q′, R′ to distinguish them from the angles in the
spherical triangle. Using normalised vectors along the sides, these angles are given by

< q̂− p̂ > ⋅ < r̂− p̂ >= cosP ′, < p̂− q̂ > ⋅ < r̂− q̂ >= cosQ′, < r̂− p̂ > ⋅ < r̂− q̂ >= cosR′. (2)
The area A′ of PQR is ‘half the base × the perpendicular height’. Taking QR as the

base, the projection of side PR onto the base has length (r̂ − p̂)⋅ < r̂ − q̂> . Calling this g and
h the height from the base to vertex P, Pythagoras’ theorem gives h2 = ∣r̂ − p̂∣2 − g2. Then

A′ = 1
2 ∣r̂ − q̂∣

¿
ÁÁÀ∣r̂ − p̂∣2 − [(r̂ − p̂) ⋅ r̂ − q̂)∣

2

∣r̂ − q̂∣2 = 1
2

√
∣r̂ − p̂∣2 ∣r̂ − q̂∣2 − ∣(r̂ − p̂) ⋅ (r̂ − q̂)∣2. (3)

An alternative formula is the modulus of the cross produce of any two sides. Thus

A′ = 1
2 ∣(r̂ − p̂) × (q̂ − p̂)∣ = 1

2 ∣(r̂ − q̂) × (p̂ − q̂)∣ = 1
2 ∣(p̂ − r̂) × (q̂ − r̂)∣. (4)

These arise because in general ∣s × t∣ = ∣s∣ ∣t∣. sin(angle between), so if ∣r̂ − q̂∣ is the base,
∣p̂ − q̂∣ sinQ′ is the perpendicular height.

These expressions may look compact in vector notation, but become long and cumber-
some when written out as co-ordinates within an xyz co-ordinate frame. When it comes to
making a specific calculation, it is probably tidiest to calculate the vector contributions along
the way rather than have a final grand algebraic formula into which substitutions are made.
To illustrate this discussion, therefore, I propose to carry through calculations with a specific
but otherwise arbitrary triangle. Its defining properties are given in Table 1. Since the sphere
has unit radius, all the position vectors are unit vectors. Several scalar and vectors products
are listed in Table 2. Many of these confirm the relations at Eq 1. Norm refers to the length of
the vector. Angles and side lengths are marked in Figure 3. From Eq 2 the angles of triangle
PQR are P ′ = 32 ⋅ 8○, Q′ = 49 ⋅ 2○, R′ = 98 ⋅ 1○ and of course they sum to 180○. There are no
such universal relations between the planar or solid angles of the tetrahedron. The familiar
Sine and Cosine formulae are readily verified. Write length QR = p, PR = q, PQ = r. Then

sinP

p
= sinQ

q
= sinR

r
= 0 ⋅ 6838, cosR = p2 + q2 − r2

2pq
.

In the tetrahedron OPQR the angles between edges at O are

p̂ ⋅ r̂ = cos θ, p̂ ⋅ q̂ = cos ξ, q̂ ⋅ r̂ = cos η. (5a)
Since the sphere has unit radius, these angles in radians are numerically equal to the arc
lengths of the edges of the spherical triangle. In the example the angles between the edges
emanating from O are

p ⋅r = 0 ⋅3873 Ô⇒ θ = 67 ⋅2○, p ⋅q = −0 ⋅0491 Ô⇒ ξ = 92 ⋅8○, q ⋅r = 0 ⋅6860 Ô⇒ η = 46 ⋅7○.
(5b)
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x y z

O 0 0 0
P 0 ⋅ 2647 −0 ⋅ 3597 0 ⋅ 8945
Q 0 ⋅ 4734 −0 ⋅ 7321 −0 ⋅ 4894
R −0 ⋅ 0466 −0 ⋅ 9977 0 ⋅ 0455

Table 1: Co-ordinates of the three vertices of the example planar and spherical triangles, being also
the components of the position vectors p̂, q̂, r̂.

x y z Norm x y z

r̂ − p̂ −0 ⋅ 3113 −0 ⋅ 6379 −0 ⋅ 8490 1 ⋅ 107 < r̂ − p̂ > −0 ⋅ 2813 −0 ⋅ 5764 −0 ⋅ 7672
q̂ − p̂ 0 ⋅ 2087 −0 ⋅ 3724 −1 ⋅ 3839 1 ⋅ 448 < q̂ − p̂ > 0 ⋅ 1441 −0 ⋅ 2571 −0 ⋅ 9556
r̂ − q̂ −0 ⋅ 5200 −0 ⋅ 2656 0 ⋅ 5349 0 ⋅ 792 < r̂ − q̂ > −0 ⋅ 6567 −0 ⋅ 3354 0 ⋅ 6755

p̂ × r̂ 0 ⋅ 8761 −0 ⋅ 0538 −0 ⋅ 2808 0 ⋅ 922 < p̂ × r̂ > 0 ⋅ 9506 −0 ⋅ 0583 −0 ⋅ 3048
q̂ × p̂ −0 ⋅ 8309 −0 ⋅ 5530 0 ⋅ 0235 0 ⋅ 998 < q̂ × p̂ > −0 ⋅ 8323 −0 ⋅ 5539 0 ⋅ 0235
r̂ × q̂ 0 ⋅ 5216 −0 ⋅ 0012 0 ⋅ 5064 0 ⋅ 727 < r̂ × q̂ > 0 ⋅ 7174 −0 ⋅ 0017 0 ⋅ 6966

Table 2: Components of vectors derived from p̂, q̂, r̂. < .. > denotes a normalised vector. The cross
product vectors point inwards into the tetrahedron.

Figure 2: Angles, side lengths and area of planar triangle PQR.

These are three of the nine internal angles between edges of the tetrahedron. In radians these
are the lengths of the arc sides of the spherical triangle.

The outwards normal to the planar triangle is given by

(r̂ − p̂) × (q̂ − p̂) = (0 ⋅ 5667, −0 ⋅ 6080, 0 ⋅ 2491), with modulus 0 ⋅ 8677.
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The area of the planar triangle PQR is half this, 0 ⋅4338 square units. The formula Eq 3 gives
the same value. The unit normal n̂ is (0 ⋅ 6531,−0 ⋅ 7007,0 ⋅ 2870), so the other dihedral angles
in the tetrahedron, those involving triangle PQR, are

with face OPR: n̂× < p̂ × r̂ >Ô⇒ 55 ⋅ 0○,

with face OPQ: n̂× < q̂ × p̂ >Ô⇒ 98 ⋅ 6○,
with face OQR: n̂× < q̂ × r̂ >Ô⇒ 48 ⋅ 0○,

For completeness the areas of the other three faces of the tetrahedron with vertices O, P, Q,
R are

PQO : 0 ⋅ 4992, PRO : 0 ⋅ 4608, ORQ : 0 ⋅ 3635.
Another parameter of the triangle is its centroid, G, which is at the mean position over the
surface, its centre of gravity, and at the intersection of the medians which joint each vertex
to the mid-point of its opposite side. We have

g = 1

3
(p̂ + q̂ + r̂) = (0 ⋅ 2305, −0 ⋅ 6965, 0 ⋅ 1502).

We can obtain some further properties of this tetrahedron. Its volume is given by the
vector ‘box product’. For any three non-coplanar vectors, u, v, w, u × v is the numerically
area of the parallelogram with sides u and v and also a vector normal to it. Taking the
scalar produce of this normal with the third vector gives the perpendicular height of the
parallelepiped. Since the tetrahedron has a triangular base which is one half the base of the
parallelogram, and since the volume of a solid cone is a third that of the prism with the same
base, the volume of the tetrahedron is

V ′ = 1

6
(p̂ × q̂ ⋅ r̂). (6)

The volume of the parallelepiped is 0 ⋅ 5915 cubic units so that of the tetrahedron evaluates
to 0 ⋅ 0986.

Spherical geometry

Before examining the spherical triangle, let us reflect on some of the differences from planar
Euclidean geometry. First take the concept of a triangle. All lines on the surface of a sphere
are by their nature curved, but the geodesics – the shortest paths between two points – are the
great circles. To every great circle there are a myriad small circles corresponding to the circles
of latitude parallel to the great circle as equator. There is a unique great circle C passing
through any two chosen points on the sphere, but it is possible to join the points with any
number of small circles, each a latitude of a great circle with the same poles as C. Similarly
many triangles could be drawn through three points, but only one has three sides which are
great circles, as with PQR in this article. Some writers refer to these as ’strict’ spherical
triangles; we may also call them ‘authentic’ or ‘great’, and the others as ‘quasi-triangles’ or
‘lesser triangles’.
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Another difference from planar geometry is the awkwardness of visualising surface area.
On a planar surface area will be measured in square units of length, such as square metres, and
we can readily draw a reference square with sides one unit long and four internal right angles.
If this is folded and cut in half, the two halves can be arranged in a half-by-two rectangle,
and we readily see that this has the same unit area. On a sphere a unit of surface area is less
easily visualised and compared with other areas. The surface area of a sphere is 4πR2 square
units. If the radius is 1, this is about 12 ⋅ 5 square units. This value is found by integration
of a surface element in spherical polar co-ordinates θ, ϕ as noted in Appendix 1. One square
unit of area is naturally shown as a segment of a hemisphere – the smaller space bounded by
two great circles of longitude 1 radian apart in azimuthal angle ϕ, and their equator. This
shape is the spherical triangle shown in the left panel of Figure 3. The solid angle subtended
at the centre of the sphere by any patch of unit area is one steradian – a solid radian. If the
radius is 1, surface area and solid angle are numerically the same.

Figure 3 shows two other blue surface patches whose area is 1 square unit. The central
panel is a quasi-rectangle which great circles along two opposite sides and lines of latitude
along the other. In Appendix 1, Eq A1.2, the area of a spherical cap on the unit sphere is
shown to be 2π(1−cos θ0) where θ0 is the angle from the pole (the centre of the cap) to the rim.
The area of a sector 1 radian in ϕ is therefore 1 − cos θ0 so the small circle at θ = 60○ divides
the triangle of the left panel of Figure 3 into two parts of equal area. In the central panel the
rectangular shape has been mirrored in the equatorial plane to make a combined area of 1
square unit. The right-hand panel shows two caps each formed by a cone of semi-angle 32 ⋅ 8○
with centre at O intersecting the sphere. θ = 32 ⋅ 8○ solves the equation 2π(1 − cos θ0) = 1. So
the full angle of the cone subtending a unit-area small circle is 65 ⋅ 6○, to be compared with 1
radian = 57 ⋅ 3○ on a planar circle.

These are probably the three simplest unit-area shapes. We now to more general
shapes, and in particular the triangle PQR of Figure 1.

Figure 3: Three depictions of unit area on a sphere with radius 1. The solid angle subtended by each
blue shape is 1 steradian. Central panel shows equator and plane at 30○ latitude.
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Area of a spherical triangle

Below I give my calculation of the area of a spherical triangle by integration. However, there
is a clever, elegant way of deriving the essential formula which I reproduce here.

Figure 4: The unit sphere cut be three central planes to form triangle PQR which lies in three lunes.
Left: front view. Right: back view.

Figure 4 is similar to the first panel in Figure 1, with the three cutting planes shrunk
almost to great circles. Each pair of planes forms a ‘lune’ – a sector of the surface between
two great circles. The area of the whole unit sphere is 4π, and the area of a lune between
great circles θ apart is 2θ square units. Our example triangle PQR forms a part of three lunes:
between the blue and red planes, the red and yellow, and the yellow and blue. Let the area
of numbered region n be An. PQR is region 1 so we want to calculate A1. Then

A1 +A2 = 2P, A1 +A3 = 2Q. A1 +A4 = 2R.

The regions marked 1* and 2* seen at the back of the sphere are equivalent triangles in the
rear hemisphere, and are congruent to 1 and 2. It can be seen that regions 1, 3, 4 and 2*
together exactly cover a hemisphere. Therefore, adding the angles

2P + 2Q + 2R = 3A1 +A2 +A3 +A4 = 2A1 + 2π so A1 = P +Q +R − π. (7)

The area is said to be equal to the ‘spherical angular excess’, over the 180○ of a planar triangle.
It will be clear that the area and hence the side lengths cannot be changed without changing
the angles. Therefore a triangle with three given angles on a unit sphere is unique. Similar
triangles do not exist in spherical geometry.

Sides and angles

Just as the planar triangle is specified by the length of its sides and the angles P ′, Q′, R′

between them, so the spherical triangle is characterised by the arc lengths of its edges and
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the angles P , Q, R between them. These are the angles between the cutting planes and are
found from expressions such as

< p̂ × r̂ > ⋅ < p̂ × q̂ >= 0 ⋅ 7660 Ô⇒ P = 40.0○, 0 ⋅ 6981 radians. (8a)

The other two dihedral angles are Q = 54 ⋅ 6○ = 0 ⋅ 95235 radians, R = 118 ⋅ 0○ = 2 ⋅ 0599 radians.
The components of these cross products are equal to the coefficients of the cutting planes, so
from Table 2

plane OPR : 0 ⋅ 9506x − 0 ⋅ 0583y − 0 ⋅ 3048z = 0,

plane OPQ : − 0 ⋅ 8323x − 0 ⋅ 5539y + 0 ⋅ 0235z = 0,

plane OQR : 0 ⋅ 7174x − 0 ⋅ 0017y + 0 ⋅ 6966z = 0.

Referring back to Figure 1, the unit tangent vectors directed along the great circle
edges, d̂ to k̂, also characterise the triangle. The three components of each of these can be
calculated in at least two ways. First, from the relations in Eq 1 together with them being
unit vectors. Three independent equations for each vector are required, so for d̂

d̂ ⋅ p̂ = 0, d̂ ⋅ (p̂ × r̂) = 0, ∣d̂∣ = 1.

The first two give simultaneous linear equations in two components. The third equation offers
a choice of sign and both need to be considered. In general dy and dz can be expressed in
terms of dx, and dx chosen to normalise to a unit vector:

dy = dx(py(pxrx + pzrz) − (p
2
x + p2z)ry

px(pyry − pzrz) − (p2y + p2z)rx
) , dz = −pxdx − pydy

pz
.

The second method is to use the triple vector product relations

d̂ = (p̂ × r̂) × p̂)
∣...∣ , ê = (p̂ × r̂) × p̂)

∣...∣ ,

where ∣...∣ denotes the modulus of the numerator.

For our example the numbers are

d̂ = (−0 ⋅ 1618,−0 ⋅ 9312,−0 ⋅ 3266), ê = ( 0 ⋅ 4871,−0 ⋅ 7508,−0 ⋅ 4461),
f̂ = ( 0 ⋅ 2883,−0 ⋅ 3962, 0 ⋅ 8717), ĝ = (−0 ⋅ 5109,−0 ⋅ 6810, 0 ⋅ 5245),
ĥ = ( 0 ⋅ 6951,−0 ⋅ 0652,−0 ⋅ 7160), k̂ = ( 0 ⋅ 3068, 0 ⋅ 0291, 0 ⋅ 9513.)

The scalar product of d̂ and ê gives the angle P of the spherical triangle, and this
equals the angle between the blue and red planes. The three angles of the triangle found from
d̂ ⋅ ê, f̂ ⋅ ĝ and ĥ ⋅ k̂ are

P = 40 ⋅ 0○ = 0 ⋅ 698 rads, Q = 54 ⋅ 6○ = 0 ⋅ 952 rads, R = 118 ⋅ 0○ = 2 ⋅ 060 rads (8b)

and of course agree with the values found from the normals at Eq 8a. Their sum is 212 ⋅ 6○ =
3 ⋅ 711 radians, an excess of 32 ⋅ 6○ = 0 ⋅ 569 radians over the planar triangle PQR, so by Eq 7
this is the area of the spherical triangle.
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The side arc lengths are numerically equal to the angles θ, ξ, η in radians. These
were found for the tetrahedron at Eq 5b, and here are obtained again from −d̂ ⋅ k̂ = +p̂ ⋅ r̂,
−ê ⋅ f̂ = +p̂ ⋅ q̂ and −ĝ ⋅ ĥ = +q̂ ⋅ r̂. They are

arc PR = 1 ⋅ 173 ≡ θ (67 ⋅ 2○), PQ = 1 ⋅ 620 ≡ ξ (92 ⋅ 8○), QR = 0 ⋅ 815 ≡ η (46 ⋅ 7○). (9)

So here is a complete description of the spherical triangle. The dimensions are written in
Figure 5, which can be compared with Figure 2 for the planar triangle.

Figure 5: Dimensions of the example spherical triangle. Angles in radians.

There are only 9 co-ordinates to vertices P, Q, R so, as with the planar triangle, there
must be relations between the angles and side lengths similar to the familiar Sine and Cosine
formulae. Bearing in mind that the edge arc lengths are numerically equal to the angles θ, ξ η
at O in the tetrahedron, we can examine sinP /ξ, sinQ/θ and sinR/η as in Figure 1. These are
not equal because the denominators increase too rapidly with angle size. The sine function
compensates for this and we find numerically that

sinP

sin η
= sinQ

sin θ
= sinR

sin ξ
= 0 ⋅ 8838.

This corresponds to a vector identity. An algebraic proof is given in Appendix 2 where it is
shown that

sinP

sin η
= sinQ

sin θ
= sinR

sin ξ
= p̂ ⋅ (q̂ × r̂)
∣p̂ × q̂∣∣q̂ × r̂∣∣r̂ × p̂∣ , (10a)

a constant property of the triangle. If we allow for the moment the spherical triangle to be
have vertices A, B, C, angles A, B, C and opposite side arc lengths a, b, c, this becomes more
familiar as

sinA

sina
= sinB

sin b
= sinC

sin c
. (10b)
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Two other ‘rules’ we can look for are the equivalents of the Cosine rule and Pythagoras’s
theorem. The Cosine rule relates the lengths of two sides to the angle between them. For a
planar triangle ABC it is readily proved by taking the sides adjacent to vertex C to be a and
b, in which case c = a − b. Then

c2 = c ⋅ c = a2 − 2a ⋅ b + b2 = a2 + b2 − 2∣a∣∣b∣ cosC.

We can derive a type of Cosine rule by using this relation on the triangle PST which is tangent
to the sphere at P, and on the other three sides of the tetrahedron it forms with the cutting
planes through O, as shown in Figure 6. We use the facts that i) the arc lengths are equal to
the angles θ, ξ and η, and ii) that triangles OPS and OPT each have a right angle at P. With
the notation in Figure 6

k2 = s2 + t2 − 2st cosP = m2 + n2 − 2mn cos η,

cos θ = 1

m
, cos ξ = 1

n
, sin θ = s

m
, sin ξ = t

n
, m2 = s2 + 1, n2 = t2 + 1.

−st cosP = 1 −mn cos η = −mn sin θ sin ξ cosP,

− sin θ sin ξ cosP = 1

mn
− cos η,

Cosine Rule : cosη = cos θ cos ξ + sin θ sin ξ cosP. (11a)
Appendix 2 gives a proof of this using vector identities. In more familiar notation

Cosine Rule : cos c = cosa cos b + sina sin b cosC. (11b)

Figure 6: A planar triangle at P spanned by tangent vectors d̂ and ê, and the tetrahedron OPST.
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Pythagoras’s theorem relates the three side lengths in a right-angled triangle to each
other. It is recovered from the Cosine rule for planar triangles ABC by setting C = π/2 and
we do the same with the Cosine rule for spherical triangles to obtain for P = 90○

cos c = cosa cos b. (12)

Spherical triangles have a second form of the Cosine rule not shared with planar ones.
The 18th century pioneers of spherical trigonometry devised a second triangle from each given
spherical one. They probably were intrigued by the fact that the arc length of a side is numer-
ically equal to the angle it subtends at O, so lengths and angles seem almost interchangeable.
They constructed a ‘dual’ triangle in which the values of the angles and of the sides were
swapped. To be precise, they replaced angle A by arc length π − a and side length b by angle
π−B. This applies only to triangles in which no side is longer than π. Using sin(π−a) = sina
and cos(π − a) = − cosa, the dual of Eq 11b is

Dual Cosine Rule : cosC = − cosA cosB + sinA sinA cos c. (13)

This type of relation occurs of other non-Euclidean geometries. For example, in hyperbolic
geometry the Cosine rules are

cosh c = cosha cosh b − sinha sinh b cosC, cosC = − cosA cosB + sinA sinB coshC.

Rotation to standard spherical co-ordinates

In the next section I determine the area of the spherical triangle PQR by integration using
spherical coordinates. The familiar spherical coordinate system r, θ, ϕ is not naturally config-
ured to cope with integration over a region bounded by other circles, great or small, which do
not share the same two poles. To calculate the area, therefore, one approach is first to rotate
it to a standard configuration matched to the spherical co-ordinate frame.

The standard spherical co-ordinate frame as used by physicists has the z axis vertical
and defines the North pole. The polar angle (the ‘co-latitude’) θ is measured from the z axis
towards the x − y plane. In this plane the azimuth (longitude) ϕ is measured from x towards
y. An orthonormal transformation will rotate any vector about the origin O as centre with
no stretching, and if its determinant is +1, there will be no accompanying reflection which
would flip a shape into its mirror image. In a companion article on perspective, also on
www.mathstudio,.co.uk, I show in some detail how a 3-by-3 matrix can be constructed with
these properties. We wish to rotate vertex P of triangles PRQ to A: (0, 0, 1), R to C: (cx, 0, cz)
and Q to B: (bx, by, bz). The effect of this is shown in Figure 7. Here the unit sphere has been
shrunk slightly to allow the vertices of the original and rotated planar triangles to stick out.
The right panel has greater shrinkage. The position vectors of A, B, C are â, b̂, ĉ.

The matrix effecting this rotation for our example is

⎛
⎜
⎝

−0 ⋅ 1618 −0 ⋅ 9312 −0 ⋅ 3266
0 ⋅ 9505 −0 ⋅ 0583 −0 ⋅ 3047
0 ⋅ 2648 −0 ⋅ 3599 0 ⋅ 8948

⎞
⎟
⎠
. (14)
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Figure 7: The original planar triangle PQR and its rotated version ABC. The unit sphere has been
shrunk to show the vertices.

This has been derived by solving a number of simultaneous equations which express the facts
that

� the dot (scalar) product of any two rows of the matrix is zero,

� the dot product of any two columns of the matrix is zero,

� the sum of squares of the elements in any row or column is 1,

� the determinant of the matrix is +1.

I obtained the matrix above by a sequence of single steps, but also have written a computer
program to solve this system. Pseudo-code is given in Appendix 3. Where there is the option
of a + or − sign, both have to be considered and checked against the determinant criterion.
The rotated positions of P, Q, R are

x y z

O 0 0 0
P → A 0 0 1
Q → B 0 ⋅ 7649 0 ⋅ 6417 −0 ⋅ 0491
R → C 0 ⋅ 9217 0 0 ⋅ 3874

Table 3: Co-ordinates of the three vertices P, Q, R of the example planar and spherical triangles
after rotation to A, B, C.

The reader may have noticed that the top row in the matrix, Eq 14, is numerically the
components of vector d̂. The reason is simply that d̂ rotates to (1, 0, 0). d̂ ⋅ d̂ = 1 and the
other two rows are orthogonal to d̂. Similarly ê rotates to (0 ⋅7660, 0 ⋅6427, 0) at right-angles
to the z axis at ϕ = 40○.

Equipped with a mechanism for rotation, we rotate triangle PQR to standard position
using the rotation matrix above, and relabel it ABC in preparation for integrating its area.
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Area by integral calculus

To determine the area A it is necessary to determine in spherical co-ordinates the equations
of the great circles which form its edges. AC is clearly ϕ = 0 with θ from 0 to arctan(cx/cz).
For our example this 67 ⋅ 2○, as can also be obtained from the scalar product â ⋅ ĉ. We noted
in a previous section that, following Eq 1, the angles between the intersecting planes are the
angles between their normals, obtained from expressions such as

< â × ĉ > ⋅ < â × b̂ >= 0 ⋅ 7551 Ô⇒ A = 40 ⋅ 0○.

The other two dihedral angles are B = 54 ⋅ 6○ and C = 118 ⋅ 0○. These are also the interior
angles of the spherical triangle and they add to 212 ⋅ 6○ = 3 ⋅ 709 radians, an excess of 0 ⋅ 572
radians over the angle sum π for a planar triangle. The excess area is obviously due to the
curved sides bowing outwards.

The great circle containing BC is less straightforward. It is the intersection of the
plane OBC with the sphere x2 + y2 + z2 = 1. Notate the normalised cross product < ĉ × b̂ > as
(vx, vy, vz) so v 2

x + v 2
y + v 2

z = 1. This is the normal to the plane pointing into the hemisphere
containing P. Its components are also the coefficients of the plane vxx + vyy + vzz = 0, from
which z = −(vxx + vyy)/vz. In the example this is (−0 ⋅ 3420, 0 ⋅ 4700, 0 ⋅ 8137) and

plane OBC : − 0 ⋅ 3420x + 0 ⋅ 4700 y + 0 ⋅ 8137 z = 0 so z = 0 ⋅ 4203x − 0 ⋅ 5775 y. (15)

z = 0 on the equator and this occurs at tanϕ = −vx/vy = 0 ⋅ 7278, ϕ = 36 ⋅ 0○ and 216 ⋅ 0○. The
axis of rotation of the plane, away from the equator θ = π/2, cuts the sphere only 4○ away
from B.

Though not essential for our purpose, I will comment on the ellipse which is the
projection of this great circle onto the x − y plane. Substituting for z in the equation of the
sphere gives

1 ⋅ 177x2 − 0 ⋅ 489xy + 1 ⋅ 334y2 = 1.

Now convert this to the standard form of an ellipse rotated in its plane through angle α:

(x cosα + y sinα)2
a2

+ (−x sinα + y cosα)
2

b2
= 1.

One semi-axis, a say, must be 1. By matching coefficients one can readily show that b = 0 ⋅8137
and α = 36 ⋅ 0○. The inclination of the plane is arccos b = 35 ⋅ 6○, and indeed we could have
found this from the z co-ordinate of < ĉ × b̂ > which is vz.

Returning to the calculation of area, the conversion between Cartesian and spherical
co-ordinates for points at unit distance from O is

x = sin θ cosϕ, x = sin θ sinϕ, z = cos θ.

These satisfy the equation of a unit sphere, x2 + y2 + z2 = 1. Let θ0(ϕ) define the great circle
BC. Substituting into the expression for z = cos θ at Eq 15 gives

cos θ0 = −
vx
vz

sin θ0 cosϕ −
vy
vz

sin θ0 sinϕ.
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from which cot θ0 = −
1

vz
(vx cosϕ + vy sinϕ). (16)

In our example cot θ0 = 0 ⋅ 4203 cosϕ − 0 ⋅ 5775 sinϕ. θ0 in Eq 16 is one limit of integration in
finding the area of the spherical triangle ABC, and hence of PQR.

An element of area is sin θ dθ dϕ so the integration is

A = ∫
A

0
∫

θ0

0
sin θ dθ dϕ = ∫

A

0
(1 − cos θ0)dϕ = ϕB − ∫

A

0
cos θ0 dϕ (17)

A being 40 ⋅ 0○ = 0 ⋅ 698 radians in our case. cos θ0 can be obtained from the following identity,
or otherwise:

cos θ0 =
cot θ0√
1 + cot2 θ0

= − −(vx cosϕ + vy sinϕ)√
v2z + (vx cosϕ + vy sinϕ)2

. (18)

The remaining integral is challenging. For the example it can be evaluated numerically and
is 0 ⋅ 1293. The area of our spherical triangle is then 0 ⋅ 6981 − 0 ⋅ 1293 = 0 ⋅ 5688 square units,
30% larger than the planar triangle with the same vertices. We have met this value already,
near Eq 8b, where it was presented as the ‘angular excess’. The challenge is now to show that
this is true in general.

To take this forwards combine the cosine and sine terms and introduce a new variable
u. Since R sin(α + ϕ) = R sinα cosϕ + R cosα sinϕ, let R sinα = vx/vz and R cosα = vy/vz.
Then

cos θ0 =
−R sinu√
1 +R2 sin2 u

, u = ϕ + α, R =
√
v 2
x + v 2

y

vz
, tanα = vx

vy
.

In the integral dϕ = du, but the limits change to α and A +α. The indefinite integral is given
in the handbook by Gradshteyn and Ryzhik (Academic Press) as item 2.597.4, page 173 as

∫
sinudu√

1 +R2 sin2 u
= − 1

R
arcsin( R cosu√

1 +R2
) .

Therefore the area A is

A − arcsin(R cos(A + α)√
1 +R2

) + arcsin( R cosα√
1 +R2

) , R√
1 +R2

=
√
v2x + v2y (19a)

since
√
1 +R2 = 1/vz. From tanα we obtain cosα = vy/

√
v2x + v2y so

R cos(A + α)√
1 +R2

= vy cosA − vx sinA,
R cosα√
1 +R2

= vy.

A = A − arcsin(vy cosA − vx sinA) + arcsin vy . (19b)
In the example the contribution from the lower limit is 0 ⋅4892, and from the upper is −0 ⋅6186
so the area is 2π/9 − 0 ⋅ 6186 + 0 ⋅ 4892 = 0 ⋅ 5688 in agreement with the numerical integration
and the proven fact that the area equals the angular excess.
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Eq 19b presents the area in quite a different way from the classic ‘three overlapping
lunes’ argument given in a previous section, leaving the question of whether it can be converted
into A +B +C − π. This would mean that −arcsin(vy cosA − vx sinA) + arcsin vy = B +C − π.
Eq 19 is a function of the unit vector v̂ normal to the yellow cutting plane OBC. Therefore
we must relate the components of v̂ to the angles B and C.

The angle between two cutting planes is obtained from the cross product of two vectors,
one lying in each plane. Let the unit normal to the blue plane OAC be n̂ = (0,1,0). n̂ ⋅ v̂ =
cosC = vy. For 0 < C < π, arcsin(cosC) = π/2 − C, but if C > π/2, cosC is negative, making
arcsin cosC negative. In this case replace arcsin(cosC) by C − π/2.

Let the unit normal to the red plane be m̂.

m̂ = 1√
b2x + b2y

(−by, bx 0),

Angle B is given by

cosB = m̂ ⋅ v̂ = −byvx + bxvy√
b2x + b2y

where n̂ ⋅ m̂ = cosA = bx√
b2x + b2y

, so sinA = by√
b2x + b2y

,

the latter following from cos2 z + sin2 z = 1. It follows that vy cosA − vx sinA = cosB and
arcsin(cosB) = π/2 −B.

Collecting these results Eq 19b is equal to the angular excess A +B +C − π.

Closing remarks

The question posed asked us to relate the properties of the planar triangle PQR to those of
the spherical triangle which shares the same three vertices. The conclusion is that the two
have little else in common. The spherical triangle belongs to a quite different geometry, more
akin to projective geometry, in which there is little constraint on the internal angles provided
they sum to more than 180○. This makes it more difficult for we humans to visualise and
compare areas. The important relations are

1. a strict (authentic) spherical triangle has three edges which are arcs of great circles,

2. its area is equal to the angular excess, P +Q +R − π, or A +B +C − π,

3. therefore the triangle with three given angles is unique,

4. the Sine rule is
sinA

sina
= sinB

sin b
= sinC

sin c
,

5. there are two Cosine rules, one the dual of the other:

Cosine Rule : cos c = cosa cos b + sina sin b cosC.

Dual Cosine Rule : cosC = − cosA cosB + sinA sinB cos c.
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Appendix 1: cone with spherical cap

This appendix considers a cone with spherical base. We find its surface area and volume. The
geometry is illustrated in Figure 8. The conical part has apex at O: (0, 0), its length is h
along the z axis and the semi-angle is C, making the radius vary as r = z tanC. A slice of
cross section at z has surface area 2πr δz and volume πr2 δz. Integrating, the area A of the
conical surface and the volume V contained are

A = 2π tanC ∫
h

0
z.dz = πh2 tanC, V = π tan2C ∫

h

0
z2.dz = 1

3
πh3 tan2C. (A1.1)

The area of the circular end face is πh2 tan2C. V is one third that of the cylinder with these
circular ends.

Figure 8: Cone with spherical cap in perspective and in section.

For comparison with the spherical triangle, the spherical end cap on the cone should
have radius of curvature such that the apex of the cone is at the centre of the sphere and the
cap fits neatly to the circular end. However, it is no more complicated to let the radius of
curvature be a more general value R, provided it is not so small (< h tanC) that the spherical
cap no longer touches the cone. The object will look somewhat like an ice cream scoop in a
cone wafer. There are two complementary arrangements, one with the centre of the sphere
inside the cone, the other with the centre outside, in which case the larger part of the ball is
also outside and stuck on the end of the cone. Using spherical polar co-ordinates R, θ, ϕ with
the pole at θ = 0 along the z axis, an element of surface area of the sphere is R2 sin θ dθ dϕ.
The area of the ring at θ is therefore 2πR2 sin θ dθ. The surface area Ac of the cap to angle θ0
is

Ac = 2πR2∫
θ0

0
sin θ.dθ = 2πR2(1 − cos θ0), (A1.2)

while the area of the larger complementary section of the sphere is 2πR2(1+cos θ0). We might
choose to express Ac in terms of its depth d from crown to base, which is R −R cos θ0. This
form is Ac = 2πRd, a compact expression.

To compare the cap with a spherical triangle we take R = h/ cos θ0 and θ0 = C, and
choose the small cap option. The area of the cap is then

2πh2 secC(secC − 1). (A1.3)
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The ratio of the area of cap to the area of the circular end to the cone is

2

1 + cosC . (A1.4)

This function is plotted in Figure 9. It rises from 1 to 2 as the semi-angle of the cone opens
to a flat surface and the cap becomes a hemisphere with area 2πh2 square units.

Figure 9: Ratio of areas of the spherical cap to the flat end of the cone as the cone widens.

For completeness, the volume of the spherical cap can be obtained as follows. An
equation for the sphere is x2 + y2 + (z +R − d)2 = R2, d again being the depth of the cap. The
axial symmetry allows us to write x2 + y2 = ρ2. The depth of an element of volume at radial
distance ρ from the z axis is z =

√
R2 − ρ2−R+d. If the circular base of the cap is divided into

thin concentric rings of width dρ, the area of the ring at ρ is 2πρdρ and the volume above it,
from base to outer surface, is 2πρz(ρ)dρ. The volume of the whole cap is the integral of this
out to ρ = R sin θ0 :

Vc = 2π∫
R sin θ0

0
ρ(
√
R2 − ρ2 −R + d)dρ.

This evaluates to

Vc =
πR3

3
(2 + cos θ0)(1 − cos θ0)2. (A1.5)

For θ0 = π/2 the solid is a hemisphere with volume 2πR3/3 = 2 ⋅094R3. If θ0 = π/4, the enclosed
volume is only 0 ⋅ 234R3, less than 1/8 of the hemisphere. On Earth latitude 45○ north runs
through the Pyrenees, Venice, Crimea, Japan, Oregon in the USA and Quebec.
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Appendix 2: Vector proofs of Sine and Cosine Rules

Sine Rule

The proof of the Sine rule for spherical triangles stated at Eq 10a, b is as follows. Bear in
mind that p̂, q̂, r̂ are unit vectors. The aim is to show that

sinP

sin η
= sinQ

sin θ
.

sinP = < (p̂ × r̂) × p̂ × q̂ > = ∣ p̂ × r̂∣p̂ × r̂∣ ×
p̂ × q̂
∣p̂ × q̂∣ ∣ ,

sinQ = < (q̂ × p̂) × q̂ × r̂ > = ∣ q̂ × p̂∣q̂ × p̂∣ ×
q̂ × r̂
∣q̂ × r̂∣ ∣ .

Take the sines of the edge arc lengths:

arc QR: sin η = ∣q̂ × r̂∣, arc PR: sin θ = ∣p̂ × r̂∣.
Cross multiply. The two sides of the conjectured equality are

Left : ∣ p̂ × r̂∣p̂ × r̂∣ ×
p̂ × q̂
∣p̂ × q̂∣ ∣ ∣p̂ × r̂∣, Right : ∣ q̂ × p̂∣q̂ × p̂∣ ×

q̂ × r̂
∣q̂ × r̂∣ ∣ ∣q̂ × r̂.

Cancel equal factors in numerator and denominator:

Left : ∣(p̂ × r̂) × p̂ × q̂
∣p̂ × q̂∣ ∣ ∣, Right : ∣ q̂ × p̂∣q̂ × p̂∣ × (q̂ × r̂)∣ .

The norms in the denominators are equal so the equality to be proved is

Left : ∣(p̂ × r̂) × (p̂ × q̂)∣ , Right : ∣(q̂ × p̂) × (q̂ × r̂)∣ .
At this stage we need two well established vector identities for general vectors A, B, C:

A × (B ×C) = B(A ⋅C) −C(A ⋅B), (A ×B) ×C = B(A ⋅C) −A(B ⋅C), (A2.1)
the dot products just being scalars. First let A = p̂ × r̂, B = p̂, C = q̂ to obtain

(q̂ × p̂) × (q̂ × r̂) = p̂(p̂ × r̂ ⋅ q̂) − q̂(p̂ × r̂ ⋅ p̂) = p̂(p̂ × r̂ ⋅ q̂), (A2.2)
the second term being zero. The triple product is a scalar, equal to the volume of the
parallelepiped spanned by the three vectors. Since p̂ is a unit vector, the norm of the left side
is simply p̂ × r̂ ⋅ q̂. Now we apply the second identity to the right side, letting Â = q̂, B̂ = p̂
and Ĉ = q̂ × r̂.

p̂(q̂ ⋅ q̂ × r̂) − q̂(p̂ ⋅ q̂ × r̂) = − q̂(p̂ ⋅ q̂ × r̂).
Again q̂ is a unit vector so the norm of the right side is also p̂ ⋅ q̂ × r̂. That completes the
proof.

For the example the triple product is 0 ⋅ 5915 and

sinP

sin η
= sinQ

sin θ
= sinR

sin ξ
= p̂ ⋅ (q̂ × r̂)
∣p̂ × q̂∣∣q̂ × r̂∣∣r̂ × p̂∣ , (A2.3)

a constant property of the triangle.

18



Cosine Rule

Translate Eq 11a into vectors:

cos η − cos θ cos η = sin θ sin η cosP

q̂ ⋅ r̂ − (p̂ ⋅ q̂)(p̂ ⋅ r̂) = ∣p̂ × r̂∣ ∣p̂ × q̂∣ ( p̂ × r̂∣p̂ × r̂∣ ⋅
p̂ × q̂
∣p̂ × q̂∣)

= (p̂ × r̂) ⋅ (p̂ × q̂).

The right side is a relabelling of Eq A2.2.

(p̂ × r̂) ⋅ (p̂ × q̂) = (p̂ ⋅ p̂)(r̂ ⋅ q̂) − (p̂ ⋅ q̂)(r̂ ⋅ p̂)

and since p̂ ⋅ p̂ = 1, this is the left hand side.
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Appendix 3: Rotation matrix

This pseudo-code calculates the matrix elements for rotating three points P, Q, R on a sphere
to standard position with P → A: (0,0,1), Q → B: (bx, by, bz), R → C: (cx,0, cz).

numa11 = py^2*rx - px*py*ry + pz*(pz*rx - px*rz)

dena11 = SQRT( (px^2 + py^2 + pz^2)* ( pz^2*(rx^2 + ry^2)

- 2*px*pz*rx*rz - 2*py*ry*(px*rx + pz*rz) + py^2*(rx^2 + rz^2)

+ px^2*(ry^2 + rz^2) ) )

a11 = numa11/dena11

numa21 = -(pz*ry - py*rz)*( (py^2 + pz^2)*rx - px*py*ry - px*pz*rz)

dena21 = a11*( (py^2 + pz^2)*rx^2 - 2*px*py*rx*ry +

(px^2 + pz^2)*ry^2 - 2*px*pz*rx*rz - 2*py*pz*ry*rz

+ (px^2 + py^2)*rz^2)

a21 = numa21/dena21

a32 = py/(px^2 + py^2 + pz^2)

a31 = (-px*pz*rx - (py*(-1 + a32*py) + a32*pz^2) * (-pz*ry + py*rz)

+ px^2*(a32*pz*ry + rz - a32*py*rz))

/ ((px^2 + py^2 + pz^2)*(-pz*rx + px*rz))

numa12 = -px*py*rx + px^2*ry + pz*(pz*ry - py*rz)

dena12 = py^2*rx - px*py*ry + pz*(pz*rx - px*rz)

a12 = a11* numa12/dena12

a22 = a21*(-pz*rx + px*rz)/(pz*ry - py*rz)

a33 = (1 - a31*px - a32*py)/pz

a23 = (-a21*px - a22*py)/pz

a13 = (-a11*px - a12*py)/pz

PRINT" Transformed vectors are : "

ppx = a11*px + a12*py + a13*pz

ppy = a21*px + a22*py + a23*pz

ppz = a31*px + a32*py + a33*pz

qqx = a11*qx + a12*qy + a13*qz

qqy = a21*qx + a22*qy + a23*qz

qqz = a31*qx + a32*qy + a33*qz

rrx = a11*rx + a12*ry + a13*rz

rry = a21*rx + a22*ry + a23*rz

rrz = a31*rx + a32*ry + a33*rz
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