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1 Introduction

I came across this question in a maths paper for 12 year-olds:

The ancient Egyptians used only ‘unit fractions’ which have 1 as their numerator.
A general fraction was written as a sum of unit fractions such as 5/18 = 1/6 + 1/9.
Write 2/3 as the sum of two or more different unit fractions.

Two answers are
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2
+ 1
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= 1

3
+ 1

4
+ 1

12
, (1)

but are these the only ones? The question can be generalised :

1. Can every fraction n/d, with n and d coprime, be written as a finite sum of different unit
fractions? If not, which can and why?

2. When a representation as a sum of unit fractions has been found, is it ever unique? If
not, are there a finite or infinite number of representations?

3. Is there an efficient algorithm for finding all such unit fraction representations of a general
fraction, and if so, what is it?

This article gives some thoughts on these questions.

2 Initial ideas

We can assume that n < d since if 2d > n > d, the unit fraction 1/1 can be subtracted. Eq 1
can be immediately generalised by multiplying all denominators by an odd number k. Thus
with k = 3
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9
= 1

6
+ 1

18
= 1

9
+ 1

12
+ 1

36
.

We might hope, therefore, that any fraction with a composite denominator could have a
factor divided out and so be reduced to a fraction whose unit representation has already been
determined or is more readily found. If this were the case, fractions could be collected into
classes, each class represented by the fraction with smallest and hence prime denominator.

It will be convenient to have a notation for these sums of unit fractions. I propose to
write 1/a + 1/b + 1/c + .. as [[a, b, c, ...]].
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Turning the question round, what fractions are formed by adding 2, 3, 4 or more
different unit fractions? Some examples are given in Table 1. The denominators of the
contributing unit fractions are listed in each row and the resulting common fraction n/d is
given in the last two columns. Thus 1/2 + 1/3 = 5/6 and 1/3 + 1/5 = 8/15. The table could be
extended to millions of fractions, but begs the question “Can, say, 11/12 be so expressed?”,
11/12 not being in the list1. One feature to note in Table 1 is how with many of the fractions
n differs from d or d/2 by ±1. Of course, this may just be a spurious consequence of the few
numbers chosen.

unit denominators n d

2 3 5 6
2 3 4 13 12
2 3 4 5 77 60
2 3 5 31 30
2 3 4 6 5 4
2 4 3 4
2 4 5 19 20
2 5 7 10
2 6 2 3

3 4 7 12
3 5 8 15
3 6 1 2
3 7 10 21

Table 1: Some sums of unit fractions.

An algorithm might develop along the following lines. Multiply n and d in turn by
integer k > 1 to produce the equivalent fraction kn/kd. Take 1/(kd) as one term in the unit
fraction decomposition, and look for a partition of kn − 1 = a + b + c + ... + z such that each of
a, b, ... z is a divisor of kd. For all the unit fractions to be different 1 < a < b < c < ... < z.
Taking 2/3 as an example and using k = 2, k = 4,

2

3
= 4

6
= 1 + 3

6
= [[6,2]] and = 8

12
= 1 + 3 + 4

12
= [[12,4,3]].

The case k = 3, 2/3 = 6/9, does not work since 6 does not split 1+a+b... into a sum of different
factors of 9.

Partitions of an integer in which all parts are distinct are naturally called ‘distinct
partitions’ or ‘strict partitions’. They were first systematically investigated by the 18th century
genius Euler, and later by Ramanujan and Hardy. However, the constraints on the partitions
for this problem are more severe in that we want only those that include 1. It serves our
purposes to separate the distinct partitions of N into two classes: Class C1 is all those which
have 1 as a part, and Class C2+ has all other parts, which necessarily start with 2, 3 or higher
number. To illustrate this examine the partitions of 10 to 13 listed in Table 2 and separated
into the two classes. It can be readily seen that C1 for N is the set C2+ for N − 1 with the

1 It can : 11/12 = [[2,4,10,20,60]].
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N Class partitions

10 C1 1, 9 1, 2, 7 1, 3, 6 1, 4, 5
C2+ 2, 8 3, 7 4, 6 2, 3, 5

11 C1 1, 10 1, 2, 8 1, 3, 7 1, 4, 6 1, 2, 3, 5
C2+ 2, 9 3, 8 4, 7 5, 6 2, 4, 5 2, 3, 6

12 C1 1, 11 1, 2, 9 1, 3, 8 1, 4, 7 1, 5, 6 1, 2, 4, 5 1, 2, 3, 6
C2+ 2, 10 3, 9 4, 8 5, 7 2, 3, 7 2, 4, 6 3, 4, 5

13 C1 1, 12 1, 2, 10 1, 3, 9 1, 4, 8 1, 5, 7 1, 2, 3, 7 1, 2, 4, 6 1, 3, 4, 5
C2+ 2, 11 3, 10 4, 9 5, 8 6, 7 2, 3, 8 2, 4, 7 2, 5, 6

Table 2: Valid distinct partitions of integers 10 to 13.

unit 1 appended to each, and the partition (1, N − 1) included. In the table for each N the
number of C1 and C2+ partitions is about the same. These small numbers compare with the
large numbers of all partitions in which those with repeated parts are included.

Much has been published on partitions of integers, both the unrestricted and distinct
types, and values are listed in Table 24.5 on page 836 of the Handbook of Mathematical
Functions by Abramowitz and Stegun. There is a generating function for the number of
distinct partitions:

∞
∏
k=1

(1 + xk) = 1 + x + x2 + 2x3 + 2x4 + 3x5 + 4x6 + 5x7 + 6x8 + 8x9 (2)

+10x10 + 12x11 + 15x12 + 18x13 + 22x14 + 27x15 + ... + 448x33 + 512x34 + ... + 10,880x60 + ...
The coefficient of xN gives the number of distinct partitions q(N) of N . There is an asymptotic
formula for this:

q(N) ∼ 33/4

12N3/4 exp
⎛
⎝
π

√
N

3

⎞
⎠
.

q(N) counts the trivial partition N itself and of course includes both classes C1 and C2+.
With unrestricted partitions there is a theorem that the number of partitions of N with no
parts equal to 1 is p(N) − p(N − 1). Another theorem states that the number of partitions of
N into distinct parts equals the number of partitions of N into an odd number of parts.

Looking at the row for N = 12 in Table 2, the partition (1, 5, 6) would allow the
unit fraction decomposition of any n/d for which the augmented denominator kd is the lowest
common multiple of 1, 5 and 6 (i.e. 30) or any multiple of this. Some cases are

2

5
= 12

30
= [[5,6,30]], 2

15
= 12

90
= [[15,18,90]], 2

25
= 12

150
= [[25,30,150]].

Clearly, as discussed above, the latter two fractions are trivial variants of 2/5.

To summarise so far, where possible the given n/d could first be reduced to a standard
representative by dividing out all but one prime factor of d to convert it to n/p, p > n. This
may be helpful. Finding a unit representation of n/d will involve finding a multiplier k which
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transforms n/d into kn/kd such that there is a partition (1, a, b, ...z) of kn in which each of a,
b, .. z is a divisor of kd. This is fortunate since it severely limits the number of partitions of
kn to be considered, and gives a fairly short list of possible numbers from which to build that
partition. Interesting though the above information on integer partitions may be, hopefully
we do not have to concern ourselves with it.

3 Towards an algorithm

Against the above background there is some prospect of developing an algorithm in the form
of an informed trial-and-error search in which the partition of numerator kn is made solely
of the factors of kd. As test cases, and to feel my way forwards, I will try to determine
unit fractions representation of the continued fraction convergents of 1/π, starting with the
well-known 7/22 which we used at primary school.

Case 7/22 and 7/11 : In order for all parts of the partition of kn to divide the magnified
denominator kd for some k, kd should be highly composite. For this reason I will try multi-
plying 22 by 15 so that kd = 2.3.5.11 = 330. This makes kn = 105, so all parts in the partition
of 104 must divide 330. The available partitions parts made from products of these primes
are therefore

2, 3, 5, 6, 10, 11, 15, 22, 30, 33, 55, 66, 110, 165.

It seems reasonable first to subtract the larger of these numbers from 104, then try to make
up the remainder with the small numbers, much as one might choose to pay a bill with large
then decreasing denomination bank notes before breaking out the small change. Proceeding
on this basis

104 − 55 = 49, 49 − 33 = 16 = 10 + 6.

We therefore arrive at

7

22
= 1 + 55 + 33 + 10 + 6

330
= [[330,6,10,33,55]].

Let us take a similar approach to 7/11. Multiplying by k = 2.3.5 = 30 gives kn/kd = 210/330
together with same set of factors. Then

209 − 165 = 44 = 22 + 11 + 6 + 5 so
7

11
= 1 + 165 + 22 + 11 + 6 + 5

330
= [[330,2,15,30,55,66]]

and so 7/22 = [[660,4,30,60,110,132]].

Was this beginner’s luck? A more severe test is 113/355, the fourth continued fraction
convergents of 1/π. 113 is prime and 355 = 5.71. This can be reduced to (1+ 42/71)/5, so can
we even represent 42/71?

Case 42/71 and 113/355: Deal with 42/71 first. In order to make its denominator highly
composite, try again multiplying by k = 30, giving kn = 1260. The available factors of kd = 2130
are:

2, 3, 5, 6, 10, 15, 30, 71, 142, 213, 355, 426, 710, 1065. (3)
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The reduction sequence 1259 − 1065 = 194, 194 − 142 = 52, 52 − 30 = 22 = 15 + 5 + 2 = 0 works
and gives

42

71
= 1 + 1065 + 142 + 30 + 15 + 5 + 2

2130
= [[2130,2,15,71,142,426,1065]].

Using 113/355 = (1+42/71)/5 we also obtain 113/355 = [[5,10,75,355,710,2130,5325,10650]].
The gaps between the larger factors at Eq 3 are so large, and the gaps between the smaller
one so small that I think this is the only partition of 1260 containing 1 which can be formed
from these numbers. This situations will arise whatever primes form the denominator kd.

We seem to have the makings of an algorithm. To test it further here is a decomposition
of 113/355 using k = 2.11.23, giving kn/kd = 57178/179630. Available factors for the partition
are

2, 5, 10, 11, 22, 23, 46 55, 71, 110, 115 142 230, 253, 355, 506, 710, 781,

1265, 1562, 1633, 2530, 3266, 3905, 7810, 8165, 11730, 17963, 35926, 89815.

Subtract in turn the largest number less than the numerator. Thus

57177 − 35926 = 21251, 21251 − 17963 = 3288, 3288 − 3266 = 22

which itself is a factor. Hence 113/355 = [[5,10,55,8165,179630]].

It is clear that unit faction decompositions are not unique for all n/d. Indeed, since
there are infinite choices of the multiplier k, there are probably a large number of decomposi-
tions for each n/d, in which case the shortest one would probably be preferred. I see no way
to identify the shortest decomposition other than by searching, but am content to leave that
question to the fabled ‘interested reader’.

John Coffey, April 2023
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